$Ca_2Si_n(n = 1 \sim 9)$ 团簇结构、稳定性与光谱性质的 理论研究

张帅张颖颖张萍李根全吕林霞卢成

(南阳师范学院物理与电子工程学院,河南南阳 473061)

关键词 光谱学;Ca₂Si_n(n=1~9)团簇;结构与稳定性;密度泛函理论 中图分类号 O641 **文献标识码** A **doi**: 10.3788/AOS201333.1116003

Theoretical Study of the Structural, Stability and Spectral Properties of Ca_2Si_n ($n = 1 \sim 9$) Clusters

Zhang Shuai Zhang Yingying Zhang Ping Li Genquan Lü Linxia Lu Cheng (Physics and Electronic Engineering College, Nanyang Normal University, Nanyang, Henan 473061, China)

Abstract The geometries, stabilities, and spectral properties of $Ca_2 Si_n$ ($n = 1 \sim 9$) clusters are systematically investigated by using first principles calculations based on the hybrid density functional theory at the B3LYP / 6-311G (d) level. The optimized geometries indicate that the most stable structures of $Ca_2 Si_n$ clusters are three-dimensional structures for $n = 3 \sim 9$. On the basis of the obtained lowest-energy geometries, the size dependence of cluster properties, such as averaged binding energies, second-order energy differences, fragmentation energies, HOMO-LUMO gaps and spectral properties, are discussed. The calculated results show that the impurity Ca atoms in the $Ca_2 Si_n$ clusters enhance the chemical stability of the silicon framework. The magic clusters are found at n = 5, 7 and 9. In addition, the spectral analysis indicates, the number of the infrared (IR) absorption peaks of $Ca_2 Si_5$ and $Ca_2 Si_9$ is more, but $Ca_2 Si_7$ is less. The Raman absorption peak of $Ca_2 Si_5$ is only one and appears in the low frequency band, on the contray, $Ca_2 Si_7$ and $Ca_2 Si_9$ have more Raman absorption peaks.

Key words spectroscopy; $Ca_2 Si_n$ cluster $(n=1 \sim 9)$; structure and stability; density functional theory OCIS codes 020.1335; 160.2100; 160.4760; 160.6000

1 引 言

碱土金属硅化物 Ca_2Si 是一种价格便宜、无毒、 耐腐蚀的新型环境半导体材料,由于其具有直接带 隙半导体性质($E_g = 1.9 \text{ eV}^{[1-2]}$),被认为是性能良 好的光电子材料,可广泛应用于发光二极管、半导体激光器与高效率太阳能电池的制备,因此吸引了国内外许多学者从理论与实验方面进行了相关研究。 Matsui 等^[3]利用 Mg 的蒸汽压高于 Ca,在 Mg₂Si 上

收稿日期: 2013-05-03; 收到修改稿日期: 2013-06-17

基金项目:国家自然科学基金(10947020)、河南省自然科学基金(2011B140015)、河南省青年骨干教师基金(2012GGJS-152) 作者简介:张 帅(1978—),男,硕士,讲师,主要从事团簇电子结构方面的研究。E-mail: cug_zhang@163.com 本文电子版彩色效果请详见中国光学期刊网 www.opticsjournal.net

通过置换法制备出 Ca₂Si 层。Tatsuoka 等^[4]直接在 Si(111)上制备出单相的 Ca₂Si 层。Bisi 等^[5]使用 Muffic-Tin 球轨道方法计算得出 Ca₂Si 是一种半导 体,但是该结论没有被光发射和反光发射^[6]实验证 实。Wen 等^[7]通过放电等离子烧结技术合成了单 相斜方晶的 Ca₂Si 烧结块,并通过第一性原理研究 了 Ca₂Si 的电学性能与塞贝克系数。Migas 等^[8]使 用全电势线性化缀加平面波法对 Ca₂X(X=Si,Ge, Sn,Pb)基态的能带、态密度与介电函数进行了计算 和比较。

尽管目前关于 Ca₂Si 的研究报道很多,但是关 于 Ca₂Si_n 团簇的理论研究还未见报道。由于密度 泛函理论(DFT)已成功用于计算分子的结构与光 谱性质^[9-11],因此本文运用杂化密度泛函方法 B3LYP,在 6-311G(d)基组水平上对 Ca₂Si_n(n=1 ~9)团簇的几何结构进行了优化,确定了基态构型, 在此基础上讨论了 Ca₂Si_n 团簇的稳定性与光谱性 质。该研究旨在探讨碱土金属双原子掺杂硅团簇的 基本性质,为实验研究提供可靠的理论依据,为功能 材料的开发提供相应的理论模型。

2 计算方法

采用 Gaussian 09 程序包^[12]中杂化密度泛函形 式的 B3LYP 方法^[13],使用 6-311G (d) 基组,对 $Ca_2Si_n(n=1\sim 9)$ 团簇各种不同的拓扑构型(线性、 平面、立体)进行了结构优化与频率计算。为了寻找 到 Ca₂Si_n(n=1~9)团簇的最低能量结构,考虑了大 量可能初始构型,构造初始构型采用两种方式:1)直 接猜测初始构型,2)以已有文献 Si_n , XSi_n , X_2Si_n 团 簇稳定构型为基本框架,然后在框架的不同位置以 戴帽、置换、填充等方式构造初始构型,在充分考虑 自旋多重态(1、3、5)的前提下,对每一个具体尺寸团 簇进行了优化,得到了多个稳定结构,根据能量高低 确定了团簇的基态结构。自洽过程以体系的能量是 否收敛为依据,能量收敛精度优于10-6,并且对所有 的构型都做了频率分析,没有虚频,说明得到的优化 构型都是势能面上的局域最小点,而不会是过渡态或 高阶鞍点[14]。为了验证所得结果的可靠性,在相同 条件下对二聚体 Sia 的键长、振动频率、垂直电离势 (VIP)与电子亲和能(EA)进行了计算,得到的结果分 别为 0.22 nm、489.5 cm⁻¹、8.84 eV 与 2.03 eV,与实 验结果(0.2246 nm、511.0 cm⁻¹、8.15 eV、2.176± 0.002 eV)基本一致[15-16],这说明所用方法与基组 对该体系是合适的。

3 结果与讨论

3.1 团簇的平衡几何构型

由于优化得到 Ca₂ Si_n (n=1~9) 团簇的稳定结 构较多,图 1 仅列出了基态与几个能量较低的亚稳 态结构,其中灰色小球代表 Si 原子,棕色小球代表 Ca 原子,构型下方圆括号内的字母表示对应的自旋 多重态,方括号内的符号代表相应的对称性,结构按 能量由低到高依次标注为 na,nb,nc(n 代表 Ca₂ Si_n 团簇中 Si 原子的数目)。

 $Ca_2Si:$ 最低能量结构如图 1 中 1a 所示,为 C_s 对称的三角形结构,电子态为³A["]。Ca-Ca 与 Ca-Si 键长分别为 0.37 nm,0.28 nm,与二聚体 CaSi 的 Ca-Si 键长 0.27 nm 相比,键长稍变长,说明 Si-Ca键略有所减弱,一定程度上利于体系活性的 提高。Ca-Si-Ca 与 Ca-Ca-Si 键角分别为 80° 与 50°。1a 结构与 As₂Si^[17]的最低能量结构一致。

 $Ca_2 Si_2: 对 Ca_2 Si_2 团簇优化得到三种平衡几何结构,其中平面菱形结构 2a 为最低能量结构,对称性为$ C_s,电子态为³A'。由 Si₄^[18]的基态结构可以看出,分别以两个 Ca 原子取代两个 Si 原子即可得到该结构,说明掺杂对纯 Si 团簇结构的影响不大。亚稳态结构 $2b 是一个扭曲的三角锥(<math>C_1$,¹A),Ca-Ca 与 Si-S 距离分别为 0.51 nm,0.23 nm。亚稳态 2c 是对称性 为 C_1 的三角锥结构,电子态为⁵A。亚稳态结构 2b 与 2c 的能量分别比 2a 高 0.01 eV,0.06 eV。

 Ca_2Si_3 : Ca_2Si_3 的最低能量结构如图 1 所示 3a,对称性为 D_{3h} ,电子态为¹A,由 3 个 Si 原子构成 一个等边三角形的底座,两个 Ca 原子分别位于三 角形两侧,形成以 Ca 原子为顶,Si 原子为底的三角 双锥结构,该构型与 Sc_2Si_3 ^[19]的最低能量结构相 同。亚稳态结构如图 1 中 3b,3c 所示,分别为具有 C_{2v} , C_1 对称性的立体结构,其能量分别比基态高 0.13 eV,0.17 eV。

Ca₂Si₄:基态为自旋单重态的四角双锥,如图 1 中 4a 所示,其可视为在 3a 构型的基础上吸附一个 Si 原子而形成的,该结构与 Al₂Si₄^[20]的最低能量结 构(边帽三角双锥)不一样。亚稳态异构体 4b,4c 的 能量较基态 4a 分别高 0.02 eV,0.14 eV。

 $Ca_2Si_5:$ 如图1所示,给出了3种低能量异构体 $5a-5c,其中基态为具有C_{2v}对称性的五角双锥5a,$ 它含有8个Ca-Si键和8个Si-Si键。其余的亚稳态结构见图1中的5b,5c,它们的能量比基态分别高0.36 eV,0.47 eV。

 Ca_2Si_6 :基态结构如图1中6a所示,为具有 C_1

图 1 Ca₂Si_n(n=1~9)团簇的平衡几何结构

Fig. 1 Geometric structures of $Ca_2 Si_n$ clusters

对称性的立体结构,自旋单重态,可看作是在 4a 构型的基础上戴帽两个 Ca 原子而形成的,它含有 6 个 Ca-Si 键和 12 个 Si-Si 键。其余两个同分异构体分别为在 5a 基础上戴帽 1 个 Si 原子的 $6b(C_s)$ 、 C_{2v} 对称性的正六面体 6c。这两种构型的能量分别比基态高 0.14 eV,0.22 eV。

 $Ca_2 Si_7$: 优化 $Ca_2 Si_7$ 得到如图 1 所示的 3 种构 型 7a-7c,最低能量结构为 C_1 对称性的戴帽一个 Si 原子的三棱锥 7a,自旋单重态,它含有 6 个 Ca-Si 键和 12 个 Si-Si 键。7b 可视为一个畸变的四棱 柱戴帽一个 Si 原子,7c 则可看作为正六面体上戴帽 一个 Si 原子的立体结构(C_s)。7b,7c 构型的能量比 基态分别高出 0.44 eV,0.52 eV。

 $Ca_2 Si_8:$ 最低能量结构如图 1 中 8a 所示,为具 有 C_1 对称性、自旋单重态的船型结构 8a,它可视为 在四棱柱的基础上吸附两个原子。8b(C_{2v})为正六 面体两端各戴帽一个 Si 原子的立体结构,8c 为自旋 单重态的正五棱柱(C_s),它们的能量比基态分别高 0.27 eV,0.47 eV $_{\circ}$

Ca₂Si₉: 基态如图 1 中 9a 所示,它可看作是在 8c 构型的基础上戴帽 1 个 Si 原子形成的,9b 为 8a 的基础上戴帽一个原子且能量较 9a 仅高 0.45 eV, 另外一种平衡结构 9c 的能量比基态高 0.64 eV。

由以上的讨论可知,当 *n*≪2 时,Ca₂Si_n 团簇的 基态构型为平面结构,从 *n*=3 开始体系的结构逐渐 转向立体结构。

3.2 团簇的稳定性

为了研究 Ca₂Si_n ($n=1\sim9$)团簇的稳定性,计算 了团簇的平均结合能 E_b 、能量二阶差分 $\Delta_2 E$ 、分裂能 D 与 能 隙 E_{gap} 随 团 簇 尺 寸 的 变 化 关 系,并 与 纯 Si_{n+2}^[18] 团簇进行对比。Ca₂Si_n 团簇 的 平均结合能 E_b 、能量二阶差分 $\Delta_2 E$ 与分裂能 D 的公式定义为

$$E_{b}(\operatorname{Ca}_{2}\operatorname{Si}_{n}) = [nE(\operatorname{Si}) + 2E(\operatorname{Ca}) - E(\operatorname{Ca}_{2}\operatorname{Si}_{n})]/(n+2), \qquad (1)$$

$$D(n, n-1) = E(\operatorname{Ca}_2\operatorname{Si}_{n-1}) + E(\operatorname{Si}) - E(\operatorname{Ca}_2\operatorname{Si}_n),$$
(2)

$$\Delta_2 E(\operatorname{Ca}_2\operatorname{Si}_n) = E(\operatorname{Ca}_2\operatorname{Si}_{n+1}) + E(\operatorname{Ca}_2\operatorname{Si}_{n-1}) - 2E(\operatorname{Ca}_2\operatorname{Si}_n), \qquad (3)$$

(1)~(3)式中 $E(Si) (E(Si_n)) (E(Ca)) (Ca_2Si_n) (E(Ca_2Si_{n-1})) 与 E(Ca_2Si_{n+1}) 分别代表相应团簇或原$ 子最稳定结构的总能量。

图 2(a)为基态 Ca₂Si_n($n=1\sim9$)团簇的平均结合能 E_b 随团簇尺寸变化的依赖特征曲线,曲线峰 值对应的那些团簇相比邻近团簇更加稳定。从 图 2(a)可以看出:Ca₂Si_n 团簇的平均结合能 E_b 在 总体上随着 Si 原子数目的增加而增大,具体体现在 当 $n=1\sim5$ 范围内,Ca₂Si_n 团簇的平均结合能 E_b 增 长非常迅速;当 $n \ge 6$ 时,虽然平均结合能 E_b 仍然在 增大,但增长速度有所减缓。在n=5,7,9时出现峰 值,表明团簇 Ca₂Si₅,Ca₂Si₇ 与 Ca₂Si₉ 与相邻团簇 相比更加稳定。此外由图 2(a)可以发现,掺杂团簇 的结合能明显小于纯 Si_{n+2}^[18] 团簇的结合能,这表 明 Ca 原子的掺杂降低了纯 Si 团簇的化学稳定性。 图 2(b)给出了分裂能 D 及能量二阶差分 $\Delta_2 E$ 随团 簇尺寸变化的依赖特征曲线。从图 2(b)可以得到: D(5,4)最大,表明从它上面去掉一个硅原子将需要 更多的能量,即 Ca₂Si₅ 团簇是 Ca₂Si_n 团簇中稳定性 最强的结构;而 D(6,5)最小,表明从它上面去掉一 个硅原子将需要更少的能量,即 Ca₂Si₆ 是 Ca₂Si_n 团 簇中稳定性最差的构型,这一现象与 Cu₂Si_n^[21] 团簇 的分裂能是一致的。由图 2(b)所示 Ca₂Si_n($n=1\sim$ 9)团簇的二阶能量差分 $\Delta_2 E$ 随尺寸变化的规律可 以看出,随着尺寸的增大,团簇的 $\Delta_2 E$ 表现为峰谷 振荡变化。当 n=2,5,7,9 时,Ca₂Si_n 团簇的 $\Delta_2 E$ 出现极值,这意味着相应团簇的稳定性较大,其中以 n=5 为最大。这一现象与分裂能 D 的变化规律是 一致的。

为了分析材料的光电特性,计算了 $Ca_2 Si_n (n =$ 1~9)团簇的最高占据轨道(HOMO)与最低占据轨 道(LUMO)之间的能隙 E_{gap} ,由图 2(c)可以清楚地 看到 E_{gap} 呈现峰谷交替变化的趋势,曲线的局域极 大值出现在 n = 7 处,说明 $Ca_2 Si_7$ 具有较强的化学 稳定性。观察图 2(b),(c)发现 $Ca_2 Si_5$, $Ca_2 Si_7$ 与 $Ca_2 Si_9$ 具有较高的分裂能与二阶能量差分,同时又 有较大的能隙 E_{gap} ,根据以上分析可以断定, $Ca_2 Si_5$, $Ca_2 Si_7$ 与 $Ca_2 Si_9$ 为 $Ca_2 Si_n$ 团簇的幻数结 构。此外与纯硅团簇 Si_{n+2} ^[18]相比, $Ca_2 Si_n (n = 1 ~$ 9)团簇的能隙减小,表明双 Ca 原子的掺杂降低了 纯 Si 团簇的化学稳定性,这与前面图 2(a)的分析结 果是一致的。

3.3 团簇的振动频率及光谱分析

对 Ca₂Si_n(n=1~9)团簇,计算了全部振动频 率。表1给出了团簇基态构型的光谱谐振频率,在

括号中标明了相应振动模式及强度,强度最大的振 动频率可以反映红外(IR)光谱中最强吸收峰的位 置(表 1中 Frequency 对应前面的数据; Intensity 对 应方括号中的数据; a", a', a, a₁, b₂ 是振动模式)。 振动模式是判断其活性的依据,红外活性或拉曼活 性决定了是否可以在实验上观测到它们。对称性为 C_{2v} 具有 a_1 和 b_2 振动模式表现为既有红外活性又有 拉曼活性;对称性为 C。具有 a", a′振动模式表现为 既有红外活性又有拉曼活性;对称性为 D_{4h} 具有 b_{2u} 振动模式表现为红外活性,b2g振动模式则表现为具 有红外活性又有拉曼活性;对称性为C₁具有 a 振动 模式的表现为既有红外活性又有拉曼活性[22]。频 率是判断稳定点的本质,最低振动频率可以反映所 得结构是否存在虚频,强度最大的振动频率可以反 映红外光谱中最强吸收峰的位置[23]。由表1可以 看出各团簇的振动频率均为正值,表明团簇结构均

为势能面上的稳定点,保证其能量的二阶导数矩阵 团簇的光谱振动频率可以为实验上表征相应分子提的本征值为正值 ^[24-25] ,相应结构稳定。计算出的各 供理论依据。	
	表 1 Ca ₂ Si _n (n=1~9)团簇基态结构的振动频率与红外光谱强度
	Table 1 Vibrational frequencies and IR intensities of possible ground states of $Ca_2 Si_n (n=1 \sim 9)$ clusters
Cluster	Frequency /cm ⁻¹ [IR intensity /(km/mol)]
Ca_2Si	104.8369 (a') [2.1224], 215.5899 (a') [5.2139], 255.3995 (a') [3.4418]
Ca_2Si_2	53. 5074 (a") [23. 3160], 131. 4300 (a') [13. 5619], 221. 1933 (a') [0. 0056], 241. 9153 (a') [0. 0123], 246. 8435 (a') [694. 4174], 452. 6016 (a') [0. 0001]
Ca_2Si_3	63.5704 (a") [63.5704], 80.0430 (a') [11.9101], 159.6323 (a") [12.5898], 194.1742 (a") [2.9961],215.3762 (a') [2. 1237],251.9443 (a') [3.8330], 298.8293 (a') [17.2927], 342.6302 (a') [53.8506], 412.9868 (a") [8.7947]
Ca_2Si_4	34. 5621 (b_{2u}) [8. 0922],119. 2677 (b_{2u}) [10. 2792],134. 9022 (b_{2u}) [4. 3900],139. 1232 (b_{2u}) [2. 9961], 249. 2717 (b_{2u}) [1. 9357],269. 1657 (b_{2u}) [25. 7037],318. 2398 (b_{2u}) [4. 6612],326. 6424 (b_{2g}) [15. 3214],346. 3024 (b_{2g}) [12. 6304],360. 4598 (b_{2u}) [92. 1121],394. 3086 (b_{2u}) [2. 1859],403. 7120 (b_{2g}) [3. 1756]
Ca_2Si_5	87. 3686 (a ₁) [14. 4884],113. 6638 (a ₁) [0. 0002],169. 2375 (b ₂) [21. 3658], 197. 9683 (a ₁) [8. 7973],207. 8722 (a ₁) [0. 0177],218. 6868 (b ₂) [4. 8387],249. 5440 (b ₂) [1. 0397],313. 5845 (a ₁) [1. 2061], 318. 4987 (b ₂) [13. 9180],325. 3168 (b ₂) [0. 0122],342. 8575 (b ₂) [1. 2470], 343. 0843 (b ₂) [2. 3963],366. 8232 (a ₁) [26. 1760],377. 6593 (a ₁) [0. 2176],451. 0786 (b ₂) [0. 9199]
$\mathrm{Ca}_2\mathrm{Si}_6$	60. 6206 (a) [0. 6064],62. 5875 (a) [13. 5005],96. 4734 (a) [2. 6244], 106. 1495 (a) [14. 5408],169. 2328 (a) [2. 0948],204. 5176 (a) [23. 8490],220. 1866 (a) [0. 8923],243. 5748 (a) [0. 3650],255. 2071 (a) [1. 5796], 255. 7921 (a) [0. 3558],258. 5128 (a) [2. 2871], 282. 0912 (a) [2. 3459],286. 1631 (a) [1. 9621],354. 2796 (a) [7. 2964],362. 5314 (a) [0. 3931],410. 2336 (a) [2. 2046],428. 0527 (a) [3. 6654],460. 8656 (a) [0. 1816]
Ca_2Si_7	27. 6128 (a) [4. 8343], 36. 5945 (a) [0. 0011], 53. 2740 (a) [6. 6627], 84. 0696 (a) [0. 0003], 93. 6517 (a) [0. 8142], 117. 4210 (a) [2. 7948], 127. 9411 (a) [1. 0447], 163. 5015 (a) [31. 6147], 182. 7485 (a) [2. 1597], 193. 9167 (a) [19. 0905], 200. 0011 (a) [22. 2151], 217. 8594 (a) [29. 4187], 256. 0945 (a) [91. 5313], 324. 8583 (a) [1. 1323], 332. 8414 (a) [0. 0025], 339. 0948 (a) [0. 5145], 349. 2913 (a) [7. 1012], 354. 9952 (a) [7. 2478], 446. 3788 (a) [4. 9613], 467. 3074 (a) [1. 7392], 562. 3676 (a) [2. 8675]
$\mathrm{Ca}_2\mathrm{Si}_8$	24. 3437 (a) [4. 3950],53. 6166 (a) [9. 9220],80. 2875 (a) [2. 2994], 117. 2680 (a) [17. 4267],118. 3651 (a) [0. 8265],151. 8952 (a) [3. 7255], 161. 3872 (a) [5. 0933],187. 5971 (a) [6. 4244], 190. 7405 (a) [1. 6217], 198. 4509 (a) [3. 4418],232. 7079 (a) [0. 1943],245. 0179 (a) [9. 1938], 258. 4979 (a) [0. 0071],270. 1848 (a) [1. 3376],286. 9668 (a) [0. 5730], 293. 4484 (a) [0. 6617],308. 6541 (a) [0. 7403],352. 3108 (a) [9. 1558],368. 4575 (a) [11. 3356],377. 3461 (a) [0. 6724],380. 1865 (a) [17. 2162],387. 7489 (a) [2. 7847],427. 0267 (a) [6. 2056],456. 4949 (a) [3. 3621]
Ca_2Si_9	76.0271 (a) [4.1607],84.4932 (a) [0.2141],114.2511 (a) [8.5066], 122.3353 (a) [3.3241],146.0401 (a) [0.3541],164. 5247 (a) [1.2070], 173.1926 (a) [9.6439],201.7653 (a) [7.1730], 212.3436 (a) [15.9813], 222.3011 (a) [0.4224],228. 5782 (a) [5.1626],228.6661 (a) [0.8042], 234.9716 (a) [17.9464],243.5937 (a) [0.3809],244.0987 (a) [2.8788], 271. 1935 (a) [2.2019],278.0049 (a) [0.1188],279.5476 (a) [1.7979],302.0395 (a) [0.8146],305.2372 (a) [4.6336],323.6563 (a) [0.5049],343.0758 (a) [0.2546],355.2013 (a) [8.1474],359.6984 (a) [0.2359],391.9173 (a) [0.6624],395.6652 (a) [6.9334],419.4968 (a) [3.1227]

为了深入测定碱土金属钙掺杂硅团簇的稳定结构,对得到的团簇基态结构的红外及拉曼光谱进行分析是十分必要的。红外光谱是分子内振动能级跃 迁的产物,电磁波导致分子振动,偶极距发生变化, 偶极子转动发射电磁波;拉曼光谱则是原子核振动 引起的电子极化发生变化导致的^[26]。幻数结构团 簇的红外及拉曼光谱如图 3 所示。

Ca2Si5 团簇的红外光谱图中振动峰较多,其中有

两个较强峰,最强的振动峰位于波数 366.823 cm⁻¹,该 处的振动模式为 Ca6-Si2,Ca6-Si3,Ca4-Si2,Ca4-Si3,Si2-Si3 原子之间的摇摆振动(该处的数字为对应原子的标 号),而对应的拉曼强度为零。次强峰位于波数 169.238 cm⁻¹,振动模式为 Ca6-Si7,Ca4-Si7 原子之间 的摇摆振动。在波数为249.544 cm⁻¹处,红外光谱出现 峰值最小值。拉曼光谱中只有一个较强振动峰,其峰 值为 218.689 cm⁻¹,振动模式为两个 Ca 原子之间的呼

图 3 Ca₂Si₅, Ca₂Si₇, Ca₂Si₉ 团簇的红外及拉曼光谱(1u=1.6605×10⁻²⁷ kg)

Fig. 3 Infrared and Raman spectra of Ca₂Si₅, Ca₂Si₇ and Ca₂Si₉ clusters (1u=1.6605×10⁻²⁷ kg)

吸振动,偏振比为 0. 263,振动模式有强的对称性。此 外团簇的红外强峰均匀分布在整个频段内且数值较 大,说明 Ca₂Si₅ 团簇的红外活性在频段内都表现得 较好;而 Ca₂Si₅ 团簇的拉曼活性强峰值局限于波数 218.3 cm⁻¹与 249.8 cm⁻¹之间,说明团簇的拉曼活 性在低频段内表现得较好。

对于 Ca₂Si₇ 团簇,红外光谱图中只有一个较强的振动峰,振动峰位于波数为 256.094 cm⁻¹,该处的振动模式为 Ca8-Si3,Ca9-Si7 原子之间的伸缩振动。拉曼光谱中有两个强振动峰,最强的振动峰位于波数 446.378 cm⁻¹,振动模式归属于 Si3,Si4,Si5,Si8,Si7 五个原子之间的呼吸振动,偏振比为 0.0519,振动模式有较强的对称性;次强峰位于波数 562.369 cm⁻¹,振动模式为 Si1 与 Si2 两个原子之间的伸缩振动,偏振比为 0.0336,振动模式的对称性很强。另外 Ca₂Si₇ 团簇的红外光谱在波数 163.2 cm⁻¹至 261 cm⁻¹段内连续获得多个强峰,表明在低频段内团簇的红外活性较好,而 Ca₂Si₇ 团簇的拉曼活性光谱的强峰则均匀分布在整个频段内,说明团簇的拉曼活性在频段内都表现得较好。这一现象与 Ca₂Si₅ 团簇正好相反。

团簇 Ca₂Si₉的红外光谱图中有两个较强的振动 峰,最强的振动峰位于波数 234.972 cm⁻¹,振动模式 为 Ca10-Si5,Ca10-Si1,Ca9-Si4,Ca9-Si3,Si2-Si3 原子 之间的伸缩振动。次强峰位于波数 212.344 cm⁻¹处, 振动模式均为 Ca10,Ca9 原子之间的摇摆振动,其他 原子做伸缩振动。拉曼光谱中仅有一个强振动峰,振 动峰位于波数 271.186 cm⁻¹,振动模式为 Si10,Si8, Si2 原子之间的呼吸振动,偏振比为 0.0811,振动模 式有较强的对称性。此外,Ca₂Si₉团簇的红外与拉 曼活性的强峰都是均匀分布在整个频段内,说明在 整个频段内的红外与拉曼活性都表现得较好,其中 红外谱强峰出现在波数 234.8 cm⁻¹处,而拉曼活性 强峰则出现在波数 271.6 cm⁻¹处,说明团簇在波数 218.3 cm⁻¹至 280.2 cm⁻¹频段内的红外和拉曼活 性表现得特别好。

4 结 论

运用密度泛函理论在 B3LYP/6-311G(d)水平 上对 Ca₂Si_n(n=1~9)团簇的几何结构、振动频率、 稳定性与光谱性质进行了系统的研究。结果表明:

1) 几何结构优化发现,当 *n*≥3,Ca₂Si_n 团簇基 态构型为立体结构,*n*=1,2 时则为平面结构。

2) 从结合能、二阶能量差分、分裂能与能隙的 分析可以看出 Ca 原子的掺杂使得使主团簇 Si_n 的 化学稳定性降低。n=5,7,9 为幻数团簇。

3) 光谱性质分析表明,Ca₂Si₅ 团簇与 Ca₂Si₉ 团 簇的 IR 较强吸收峰的个数较多,在整个观察频段 内的活性较好,而 Ca₂Si₇ 团簇的 IR 较强吸收峰的 个数则较少;Ca₂Si₅ 团簇的拉曼只有一个较强峰值 且位于低频段内,Ca₂Si₇ 团簇与 Ca₂Si₉ 团簇的拉曼 较强峰的个数较多,且多位于高频段内。

参考文献

¹ J Derrien, J Chevrier, V Le Tranh, *et al.*. Semiconducting silicide-silicon heterostructures: growth, properties and applications [J]. Appl Surf Sci, 1992, 56-58(1): 382-393.

² Y Imai, A Watanabe. Energetics of alkaline-earth metal silicides calculated using a first-principle pseudopotential method [J].

Intermetallics, 2002, 10(4): 333-341.

- 3 H Matsui, M Kuramoto, T Ono, *et al.*. Growth of Ca₂Si layers on Mg₂Si/Si(111) substrates [J]. J Cryst Growth, 2002, 237-239(3): 2121-2124.
- 4 H Tatsuoka, N Takagi, S Okaya, *et al.*. Microstructures of semiconducting silicide layers grown by novel growth techniques [J]. Thin Solid Films, 2004, 461(1): 57-62.
- 5 O Bisi, L Braicovich, C Carbone, *et al.*. Chemical bond and electronic states in calcium silicides: theory and comparison with synchrotron photoemission [J]. Phys Rev B, 1989, 40(15): 10194-10209.
- 6 C Chemelli, M Sancrotti, L Braicovich, *et al.*. Empty electronic states of calcium silicides: an inverse-photoemission investigation in the ultraviolet photo range [J]. Phys Rev B, 1989, 40(15): 10210-10217.
- 7 C Wen, T Nonomura, K Isobe, *et al.*. Effect of Na addition on electric properties of Ca₂Si sintered compacts [J]. Mater Sci Eng, 2011, 18(14): 142014.
- 8 D B Migas, L Miglio, V L Shaposhnikov, *et al.*. Comparative study of structural, electronic and optical properties of Ca₂Si, Ca₂Ge, Ca₂Sn and Ca₂Pb [J]. Phys Rev B, 2003, 67 (20): 205203.
- 9 Yan Wanjun, Zhou Shiyun, Xie Quan, *et al.*. First principles study of electronic structure and optical properties for Co-doped β-FeSi₂[J]. Acta Optica Sinica, 2011, 31 (6): 0616003.
 闾万珺,周士芸,谢 泉,等. Co 掺杂 β-FeSi₂ 电子结构及光学 性质的第一性原理研究[J]. 光学学报, 2011, 31(6): 0616003.
- Yan Wanjun, Zhou Shiyun, Xie Quan, *et al.*. Effect of Al doping concentration on electronic and optical properties of CrSi₂[J]. Acta Optica Sinica, 2012, 32 (5): 0516003.
 闫万珺,周士芸,谢 泉,等. Al 掺杂浓度对 CrSi₂ 电子结构及 光学性质的影响[J]. 光学学报, 2012, 32(5): 0516003.
- 11 Cai Jianqiu, Tao Xiangming, Luo Haijun, et al.. Ab-initio investigation of anisotropic optical properties of Sr₂RuO₄ [J]. Acta Optica Sinica, 2010, 30(12): 3580-3585.
 蔡建秋,陶向明,罗海军,等. Sr₂RuO₄ 各向异性光学性质的第一性原理研究[J]. 光学学报, 2010, 30(12): 3580-3585.
- 12 M J Frisch, F R Clemente, G W Trucks, et al.. Gaussian 09 Revision C. 01 [CP]. Pittsburgh PA: Gaussian Inc, 2009.
- 13 C Lu, X Y Kuang, Z W Lu, *et al.*. Determination of structures, stabilities, and electronic properties for bimetallic cesium-doped gold cluster: a density functional theory study [J]. J Phys Chem A, 2011, 115(33): 9273-9281.
- 14 Zhang Xiurong, Li Yang, Yin Lin, *et al.*. Theory study of polarities and spectrum properties of W_nNi_m(n+m=8) clusters [J]. Acta Physica Sinica, 2013, 62(2): 023601.
 张秀荣,李 扬,尹 琳,等. W_nNi_m(n+m=8)团簇的极性和
- 光谱性质的理论研究[J]. 物理学报, 2013, 62(2): 023601.
- 15 K P Huber, G Herzberg. Constants of Diatomic Molecules [M]. New York: Van Nostrand / Reinhold, 1979.
- 16 T N Kitsopoulos, C J Chick, Y Zhao, et al.. Study of the low-

lying electronic states of Si_2 and Si_2^- using negative ion photodetachment techniques [J]. J Chem Phys, 1991, 95(3): 1441-1448.

- 17 A M Gao, G L Li, Y Chang, *et al.*. The structures and stabilities of small diarsenic-doped silicon clusters [J]. Inorg Chim Acta, 2011, 367(1): 51-56.
- 18 C Pouchan, D Bégue, D Y Zhang. Between geometry, stability, and polarizability: density functional theory studies of silicon clusters Si_n (n = 3 10) [J]. J Chem Phys, 2004, 121(10): 4628-4634.
- 19 H G Xu, Z G Zhang, Y Feng, *et al.*. Photoelectron spectroscopy and density-functional study of Sc₂Si_n⁻ (n=2-6) clusters [J]. Chem Phys Lett, 2010, 498(1-3); 22-26.
- 20 W F Ding, B X Li. A first-principles study of $Al_n Si_{m-n}$ clusters $(m=6,9,10; n \le m)$ [J]. J Mol Struct: THEOCHEM, 2009, 897(1-3): 129-138.
- 21 P Shao, X Y Kuang, L P Ding, et al.. Density-functional theory study of structures, stabilities, and electronic properties of the Cu₂-doped silion clusters: comparison with pure silicon clusters [J]. Physica B: Condensed Matter, 2012, 407 (21): 4379 – 4386.
- 22 Zhang Xiurong, Gao Conghua, Wu Liqing, *et al.*. The theory study of electronic structures and spectrum properties of W_nNi_m (n+m≤7; m=1.2) clusters [J]. Acta Physica Sinica, 2010, 59 (8): 5429-5438.
 张秀荣,高从花,吴礼清,等. W_nNi_m(n+m≤7; m=1.2)团簇电子结构与光谱性质的理论研究[J]. 物理学报, 2010, 59(8):
- 5429-5438.
 23 Zhang Xiurong, Gao Conghua, Hong Lingli. Theoretical study of geometrical structures and properties of Pt_nNi_m(n+m=6,n,m≠ 0) clusters [J]. Acta Photonica Sinica, 2009, 38(12): 3109-3115.

张秀荣,高从花,洪伶俐. Pt_nNi_m(n+m=6,n,m≠0)团簇结构 与性质的理论研究[J]. 光子学报,2009,38(12):3109-3115.

- 24 Ma Deming, Shi Wei, Li Enling, et al.. Structure and photoelectron energy spectrum of Ga₂As_n ion clusters [J]. Acta Optica Sinica, 2009, 29(4): 1032-1037.
 马德明,施 卫,李恩玲,等. Ga₂As_n 离子团簇结构与其光电子 能谱研究[J]. 光学学报, 2009, 29(4): 1032-1037.
- 25 Li Enling, Ma Deming, Liu Mancang, et al.. Structure and photoelectron energy spectrum of Ga₂As_n ion clusters [J]. Acta Optica Sinica, 2009, 29(12): 3248-3254.
 李恩玲,马德明,刘满仓,等. 氮化镓中性和离子团簇结构与振 动光谱的研究[J]. 光学学报, 2009, 29(12): 3248-3254.
- 26 Wang Xianwei, Gong Sen, Zhao Gaofeng. The study of growth patterns and spectra properties for alkaline earth Be, Mg, Ca doped P clusters [J]. Journal of Atomic and Molecular Physics, 2009, 26(3): 452-459.

王献伟, 龚 森, 赵高峰. 碱土金属 Be、Mg、Ca 掺杂磷团簇结构 演变规律与光谱性质研究[J]. 原子与分子物理学报, 2009, 26 (3): 452-459

栏目编辑: 王晓琰